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Abstract—In this paper we describe the solution of a stochastic bistable system from a dynamical perspective.
We show how a single framework with variable noise can explain hysteresis at zero temperature and two-state
coexistence in the presence of noise. This feature is similar to the phase transition of thermodynamics. Our
mathematical model for bistable systems also explains how the width of a hysteresis loop shrinks in the pres-
ence of noise, and how variation in initial conditions can take such systems to different final states.
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1. INTRODUCTION
Many systems in nature make transition from one

state to another depending on the parameter values.
For example, in a magnetic system, a paramagnetic
state transforms to a ferromagnetic state depending on
the temperature of the heat bath [1–5]. Such thermo-
dynamic transition, to a mean field approximation, is
described by the free energy of the form

(1)
where X stands for the order parameter, here magneti-
zation, and d(T) ∝ T – Tc with T, Tc as the temperature
and critical temperature respectively [1–5]. It has been
shown that the aforementioned transition and the liq-
uid-vapor transition near the critical temperature
belong to the same class, known as second order transi-
tion since the order parameter grows smoothly from
zero to nonzero value [1, 6]. However, far away from
Tc, these systems exhibit first order transition in which
the order parameter jumps by a finite value. To a mean
field approximation, the free energies of such systems
are approximated by

(2)
The aforementioned transitions are generally studied in
the framework of equilibrium statistical mechanics [1–5].

Interestingly dynamical systems too exhibit similar
transitions, which are often studied in the framework
of bifurcation theory [7]. Corresponding to Eqs. (1),

(2), the time-dependent variation of the order param-
eter are described by the following equations:

(3)

(4)
Equation (3) exhibit supercritical pitchfork bifurca-
tion, while Eq. (4) exhibits subcritical pitchfork and
saddle-node bifurcations, leading to hysteresis [7].
The models of Eqs. (3), (4) have been employed to
study a large number of nonequilibrium systems. For
example, magnetohydrodynamic systems yield
asymptotic states with either no magnetic field, or with
a finite but constant (in time) magnetic field.
Researchers [8, 9] have modelled the aforementioned
dynamo transitions using Eqs. (3), (4). Another inter-
esting phenomenon is the polarity reversals of the geo-
and solar magnetic fields. The solar magnetic field
flips quasi-periodically every eleven years. However,
the interval between two consecutive reversals in geo-
magnetic field is random with the average interval
being 200000 years. Researchers [10] have attempted
to model the dynamics of reversals using amplitude
equations that have similar forms as Eqs. (3), (4).

Systems with two stable configurations are referred
to as bistable systems. Bistability is observed in lasers
(e.g., excited and non-excited states of atoms) [11],
climate (e.g., ice age and warm phase on the Earth)
[12], ecology (e.g., species proliferation and species
extinction) [13], and in transition to turbulence [14,
15]. In addition to the critical parameter, such systems
are affected by the noise of the environment. Hence1 The article is published in the original.
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stochasticity is often invoked to model such system. A
stochastic version of the dynamical systems are
referred to as stochastic bistable systems, and they have
been studied in literature. Haken [16] studied non-
equilibrium phase transitions and pattern formation
using stochastic versions of Eqs. (3), (4). Shi et al. [17]
studied stochastic bistable systems and classified the
system behavior based on temporal scales and noise
strength. A related phenomenon is a stochastic reso-
nance [18] in which a weak signal is amplified by the
combined effects of nonlinearity and noise.

In this paper we focus on Eq. (4) that exhibits stable
states as X = 0 and X =  (see Section 2). We analyze
some of the system properties from a dynamical per-
spective. For example, for zero or weak noise, the sys-
tem exhibits hysteresis. However it exhibits phase
coexistence when the noise strength becomes compa-
rable to the potential barrier [19]. We also demonstrate
that the final state of the system depends on the initial
condition.

The organization of the paper is as follows: In Sec-
tion 2 we recapitulate the hysteresis behavior of
Eq. (4). In Section 3, we show how a particular choice
of noise strength leads to transition from one phase to
another, with a phase coexistence state in between. In
Section 4 we demonstrate how a hysteresis can shrink
under weak noise. We conclude in Section 5. In
Appendix A, we derive equation of motion for the sto-
chastic damped nonlinear oscillator, and in
Appendix B, we show hysteresis and phase coexis-
tence for another bistable system.

2. NOISELESS BISTABLE SYSTEM: 
HYSTERESIS

A popular dynamical model for the first-order
transition is

(5)
where X represents the mean field, and с is a system
parameter [1–5]. In Appendix A, we relate the above
equation to the damped nonlinear oscillator

(6)

where X,  are respectively the amplitude and velocity
of the oscillator, γ = 1/|c| is the frictional coefficient,
and F(X) is the external force. We assume that the nat-
ural frequency of the oscillator is unity, and X3, X5 are
the nonlinear terms. Here, the viscous damping is so
strong that it matches with the external force; it is the
quasi-static limit of the oscillator.

The steady-state solutions of Eq. (5), obtained by
setting  = F(X) = 0, are shown in Fig. 1a. The stable
solutions, X = 0 and

(7)
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are shown as red and green curves respectively, while

(8)

the unstable solutions, are shown as dashed black
curves [7]. When we relate the above dynamical system
to the liquid-vapor transition, the red curve corre-
sponds to the vapor state, while the green curves to the
symmetric liquid states. In the parameter regime
[‒1/4, 0], the system can take one of the three stable
solutions X, , and .

The system corresponding to Eq. (5) exhibits hys-
teresis, as described below. Suppose the system is at A
on the X = 0 branch of Fig. 1a. On an increase of c, the
system remains on the X = 0 branch until B, after
which it jumps to C. When we decrease с at C, the sys-
tem follows  branch until D. A further decreases of
с pushes the system to A. This phenomenon, called
hysteresis [1–4, 7], is observed in many physical exam-
ples, e.g., for a ferromagnet in an external magnetic
field, and in atmosphere [12], optics [11], and ecology
[13], dynamo transition [8, 9]. etc. It is interesting to
note that the final state of the system depends on the
initial condition. A system with the initial condition at
F of Fig. 1c goes to X = 0, while one at G settles down
to . This feature has not been explored extensively
in many applications of statistical physics since time
dependence (d/dt) is typically absent in equilibrium
statistical physics. We believe that an exploration of
initial condition sensitivity in experiments could yield
interesting predictions for such systems. 

The potential

(9)

displayed in Fig. 1b, also helps us understand the
dynamics of transition. The potential minima corre-
sponding to the stable solutions, marked as S in
Fig. 1b, are separated from each other by the potential
maxima corresponding to the unstable solutions,
which are marked as U in Fig. 1b. The three curves
correspond to с = , c*, and cl. The global minimum
for с =  and cl are at X = 0 and  respectively. At
с = с*, the potential values at X = 0 and  are the
same.

From the potential plot too, we demonstrate that
the final state of the system depends on the initial con-
dition. For example, in Fig. 1c, a system with config-
uration F will settle down to X = 0, while configuration
G settles down to X = . Note that the system slides
to the local minima, which may not be the global min-
imum. Verma and Yadav [9] demonstrated the initial
condition dependence of the final state in a dynamo
transition. They performed numerical simulations of
magnetohydrodynamic equations with two different
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Fig. 1. (Color online) The fixed points X* of  = cX + X3 –

X5 = cF(X), and the potential V(X) = – (X')dX'. (a)

Stable fixed points X = 0 and , and unstable points
. (b) Plots of V(X) for с = , c*, and cl. Note that  <

c* and cl > с*, (c) for a parameter c, a system with the initial
condition F reaches X = 0, while one with G reaches X =

, thus exhibiting sensitivity to initial condition.

X*

c*

1

−1

0

0

0

0.2

0.1

D
G

A

F

C

B

XS

XS

XS

XU

XU

0

0 1

0 1.5−1.5

–1/4 0.1

(a)

(b)

(c)

V

V

c = cv < c*
c = c*
c = cl > c*

F

X

X

c

G

S

S

S S

S

S

S

U U

+

+

−

−

+

�X

∫
X

F

±SX

±UX
v

c
v

c

+SX
initial conditions for the same parameter values, and
observed that one initial condition leads to zero mag-
netic field, while the other one yields nonzero mag-
netic field.

In the next section, we introduce noise in Eq. (5)
and study transition and state coexistence in a stochas-
tic bistable system.

3. TRANSITION AND STATE COEXISTENCE 
IN STOCHASTIC BISTABLE SYSTEM

The system described by Eq. (5) is noiseless, hence
it can be treated to be at zero temperature. A natural
question is whether the above system could exhibit
phase coexistence, as in solid-liquid and liquid-vapor
phase transitions. We show below how an introduction
of noise can yield such features. With noise, the
dynamical Eq. (5) is modified to

(10)
with

(11)
where T and kBT are interpreted as the temperature and
thermal energy respectively [2, 5] (see Appendix A).
Here kB is the Boltzmann constant. In the following
discussion, we relate the X = 0 state to the gaseous
phase, while X =  to the liquid phase. The thermal
energy works against the potential barriers:

(12)

for the gaseous state and

(13)

for the liquid state. These barriers are shown in Fig. 2b.
For modeling phase transitions under heat bath, it

is customary to take с ∝ (T – T*), where T* is the tran-
sition temperature [1–4, 7]. Hence the system param-
eter с is a function of temperature. We invert the above
relation to

(14)
with с = с* at T = T*, as shown in Fig. 2c. Note that
the temperature decreases as с increases or
γ decreases. The temperature can take the system
from one potential minimum to another minimum if
the thermal energy is sufficiently large to climb the
potential barrier corresponding to the unstable config-
uration. Such jumps are not possible without noise.

Equation (10) is a stochastic differential equation
(SDE), which can be analyzed analytically [16] or
numerically. In this paper, we solve this equation using
numerical simulation. We solve Eq. (10) using second-
order Runge-Kutta (RK2) method prescribed by Rob-
erts [20]. From Eq. (11), we can deduce the form of η as

(15)
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where ξ is the Gaussian noise with zero mean. We
divide the time domain into n equal intervals with
(n + 1) data points including the endpoints. Here the
step size Δt = tn + 1 – tn. A time step of Eq. (10) involves
YSICS  Vol. 127  No. 3  2018
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Fig. 2. (Color online) For the transition and phase coexistence in stochastic two-state system: (a) Fixed point X* vs. с. (b) V(X)
vs. X depicting the potential differences Δ  = V( ) – V(0) and ΔVl = V( ) – V( ). (c) Plots of Δ , ΔVl, and temperature
T = T* – 0.1(c – c*), where T* is the critical temperature. For the vapour state, T =  or с = : (d) V(X) vs. X with the shaded
region exhibiting thermal energy kB  with ΔVl < kB  < Δ ; (e) the time series X(t) vs. t; (f) probability distribution function
PDF P(X). At the transition temperature, T = T* or с = с*: (g, h, i) plots of V(X) vs. X, X(t) vs. t, and P(X). For the liquid state,
T = Тl or с = cl: (j, k, l) plots of V(X) vs. X, X(t) vs. t, and P(X).
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Here Sn = ±1 with each alternative chosen with equal
probability of 1/2, and ηn is a random variable with a
uniform distribution given by Eq. (15). We performed
our simulation for 2 million time steps with a fixed

= Δ + + Δ + η −2 1[ ( , ) ].n n n nk t f X k t t S
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Δt = 0.1. We report the steady-state statistics of the sys-
tem using the later half of the time series so as to dis-
card the transients.

In the following discussion, we will examine the
state of the system at three temperatures— , Tl, and
T* shown in Fig. 2c; the corresponding values of с for
these temperatures are , cl, and c* respectively (see
Fig. 2a). We will show below that they correspond to
the vapor state, the liquid state, and phase-coexistence
during a liquid-vapor transition.

At T =  or с = , thermal energy  has property
that ΔVl < kB  < Δ , as shown in Figs. 2c, 2d. Hence
the thermal energy due to temperature is strong
enough to overcome ΔVl barrier. Therefore the system
escapes from the liquid state, and remains in the vapor
state. We solve the Eq. (10) numerically with random
noise corresponding to T =  and obtain the time
series X(t) and the probability distribution of X, both of
which are plotted in Figs. 2e, 2f respectively. Clearly,
X(t) f luctuates around X = 0, the global minimum,
and the rms value of the f luctuations is proportional to
the temperature. There is, however, a small probability
for the system to jump from the global minimum to
local minima with the rate given by Kramer’s rule [2].

At T = Tl or с = cl, Δ  < kBTl < ΔVl, as shown in
Fig. 2j. Following similar arguments as described
above, we conclude that the temperature will take
away the system from the vapor state (X = 0) and push
it to the liquid state (X =  or ). The time series
of X and its probability distribution, shown in Figs. 2k,
2l also indicate that the system gets locked into one of
the two liquid states.

Lastly, at T = T* or с = с* = –3/16, kBT* = ΔVl =
Δ , as shown in Fig. 2g. Here, the temperature makes
the system fluctuate between the liquid and vapor
states as indicated in the time series X(t) and its prob-
ability distribution (shown in Figs. 2h, 2i). This is the
phase-coexistence phenomena. In statistical mechan-
ics and thermodynamics, the condition kBT* = ΔVl =
Δ  corresponds to equating the free energies of the
two phases at the transition, as in Maxwell’s construc-
tion [1–4].

Thus, for the potential profile of Fig. 2b, at a given
temperature, the stochastic system moves to the global
minimum at that temperature. We observe that the
two states coexist at T = T*. Thus our stochastic model
approximately mimics the thermodynamic mean-
field behavior. Our calculation also reveals that the
critical temperature T* is related to the barrier height
between the potentials of unstable and stable configu-
rations at the transition. It is a useful prediction, and it
requires information about the unstable configuration.

It is interesting to relate the above phenomena to
thermodynamics. It is tempting to relate the transition
T* to the latent heat L between the two phases, i.e.
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kBT* = L. But this is not the case. A careful investiga-
tion shows that the free energy is typically reported for
a stable configuration (for example, for liq-
uid/vapor/solid phases). Equating the free energies of
the two phases that are participating in phase transi-
tion, we obtain

(19)
where Ei and Si are the internal energies and the entro-
pies of the two states. Hence

(20)
where ΔS is the change in entropy between the two
phases. Therefore,

(21)

where R is the gas constant, and ΔS is units of
Joule/(mole Kelvin). According to Trouton’s rule,
L/RT* ≈ 8 to 15 for liquid-vapor transition, and
approximately 1 to 3 for solid-liquid or melting transi-
tion for a wide range of materials at normal pressure
and temperature [21]. Thus we show that the L ≠ RT*.
Rather, T* is determined from the potential barrier
height of the stable phase and unstable configuration.
To best of our knowledge, entropy computation of the
unstable configuration between the two stable phase
has not been performed. For example, for the liquid-
vapor transition, the system should be making a tran-
sition from liquid to vapor after climbing the potential
barrier corresponding to the unstable configuration. It
will be interesting to study this configuration in
Monte-Carlo simulations of phase transitions.

In the present paper we relate the parameter с to
the temperature T in order to model thermally-
induced transitions. Note however that different tem-
perature profiles will exhibit different behavior. Also, с
and T could be varied independently that would give
flexibility in modelling different complex material.

The features discussed in this section is generic,
and it is observed in other bistable systems. In Appen-
dix B we show that the system

(22)
exhibits similar features as the system corresponding
to Eq. (4). Recently Shi et al. [17] studied the noisy
version of above system and related the noise strengths
to state transition, basin transition, and distribution
transition. In our paper we provide simpler dynamical
interpretations.

Stochastic bistable systems also exhibit other inter-
esting features, e.g., hysteresis shrinkage, which will be
discussed in the next section.

4. HYSTERESIS SHRINKAGE DUE TO NOISE
The hysteresis of Fig. 1 has no noise. In stochastic

bistable systems, the hysteresis shrinks under the
introduction of noise or temperature. As discussed
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Fig. 3. (Color online) Shrinkage of hysteresis with a weak
noise: (a) ABCD is the hysteresis without noise, but
EFGH is one with noise, (b) in V(X) vs. X plot, the noise
induces transition from E to F before В. (c) Due to the
noise, the system transitions from G to H before D.
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earlier, the zero-temperature hysteresis is given by
ABCD loop of Fig. 3a. However, an introduction of
weak noise can yield a transition from X = 0 to X = 
at E of Fig. 3a rather than at B, and from X =  to

+SX
+SX
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X = 0 at G rather than at D. The corresponding poten-
tial functions are shown in Figs. 3b, 3c respectively.
Thus, in the presence of noise, the width of the hyster-
esis has shrunk from ABCD to HEFG of Fig. 3a.

Such hysteresis shrinkage have been reported in
other areas of science. For example, Guttal and Jay-
aprakash [22] showed that region of bistability in envi-
ronmental system (characterized by parameters such
as nutrient input and rainfall) are reduced under the
introduction of weak noise. Similarly, Gopalkrishnan
and Sujith [23] observed shrinkage of the hysteresis
loop in Rijke tube under the introduction of weak
noise.

The above analysis shows that a parametric study of
the noise strength and c(T) yields interesting insights
into these systems.

5. CONCLUSIONS
In this paper we present effects of noise in bistable

systems. For zero noise or a small amount of noise, the
system shows hysteresis, but the hysteresis width
decreases with the increase of noise. By appropriate
modelling of the noise strength with system parame-
ters, we can model the transition in the system from
one state to another, along with a phase coexistence at
the critical temperature. Thus a single stochastic sys-
tem can exhibit hysteresis and phase coexistence. Such
features could be useful for studying systems in optics,
ecology, economics, etc.

We thank Stephan Fauve, Maurice Rossi, Amit
Dutta, Daan Frenkel, R. Sujith, and Arul Lakshmina-
rayam for valuable suggestions. This work was sup-
ported by the research grants SERB/F/3279 from Sci-
ence and Engineering Research Board, India, and
PLANEX/PHY/2015239 from Indian Space Research
Organization, India.

APPENDIX A
Stochastic Nonlinear Damped Oscillator 

under Extreme Dissipation
The Langevin’s equation with an external constant

forcing F and noise ζ(t) is
(23)

The above equation describes the motion of a par-
ticle of mass m experiencing frictional force –γ ,
external force F, and random force ζ(t). The position
and velocity of the particle X and  respectively. The
solution of the above equation is [2]

(24)
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Fig. 4. (Color online) (a) Bifurcation diagram correspond-
ing to Eq. (31); the upper and lower branches represent
vapour and liquid states respectively. (b) Plots of V(X) vs. X
for λ = λl = 1 (green curve, liquid state), λ =  = 0 (black
curve, phase coexistence), and λ =  = –1 (red curve,
vapor state).
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For extreme dissipation, the transient, exp(–γt/m) →
0, hence

(25)

where X is the position of the particle. For Langevin’s
equation [2]

(26)
where T is the temperature, and kB is the Boltzmann’s
constant.

We choose the external force as

(27)
and ζ = γη, then

(28)
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with γ = 1/|c|. Thus, the system corresponds to a non-
linear stochastic oscillator with natural frequency
ω0 = 1. Also, using Eq. (26), we obtain

(29)

We employ the above equation for the simulation of
the stochastic bistable system.

APPENDIX B

Hysteresis and Phase Coexistence
in  = –λ + 3X – X3 + η

In this section, we study another noisy bistable sys-
tem and show that this system too exhibits hysteresis
and phase coexistence as discussed in Sections 2 and 3.
This example is often used to describe first-order
phase transition [5].

〈η η 〉 = 〈ζ ζ 〉 = δ −
γ

B2
1( ) ( ') ( ) ( ') 2| | ( ').t t t t c k T t t
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Fig. 6. (Color online) Refer to  = –λ + 3X – X3 + η(t) (Eq. (31)). (a, b, c) For the vapor state with T = , plots of potential
V(X), time series X(t), and PDF of X. (d, e, f) Corresponding plots for the phase-coexistence. (g, h, i) Corresponding plots for the
liquid state. The notation is same as Fig. 2. Here red and green colors refer to the vapor and liquid states respectively.
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Here we describe the new bistable system. The
potential function of the system is

(30)

where λ is the control parameter, and the correspond-
ing stochastic differential equation is

(31)
where η(t) is the noise strength with

(32)
where kBT represents the thermal energy [2].

First we consider the noiseless version of Eq. (4).
In Fig. 4a we plot the bifurcation diagram in which the
x – y axes represent λ and the fixed point X* respec-
tively. From the figure we deduce that the system has
three fixed points—Xl,  (stable ones) and Xu (unsta-
ble). Here l and  represent the liquid and vapour
states. These interpretations become apparent when
we consider the stochastic equation.

In Fig. 4b we plot potential function for three
cases—λ = ±1, 0. For λ = –1, the global minimum
occurs with X* > 0 (vapour state). Hence, we label λ =
–1 as . On the contrary the global minimum for λ =

= λ − +2 43 1( ) ,
2 4

V X X X X

= −λ + − + η�

33 ( ),X X X t

〈η η 〉 = δ −B( ) ( ') 6 ( '),t t k T t t

v
X

v

λ
v
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1 has X* < 0 (liquid state), hence we label λ = 1 as λl.
For λ = 0, V(Xl) = V( ), hence λ = 0 corresponds to
phase coexistence, and we denote it by . Note that
the maxima of the potential corresponds to an unsta-
ble phase. Since the system has two potential minima
and a potential maximum, it has two potential barriers
as shown in Fig. 5a:

(33)

Now we introduce noise in the system and solve
using the same procedure as in Section 3. We employ
temperature given by

(34)
which is illustrated graphically in Fig. 5b. In the figure
we label the temperature corresponding to  as

. Note that  corresponds to phase coexistence
state, while T <  to liquid state, and T >  to the
vapour state. For a given temperature, we also solve
Eq. (31) numerically using the method described in
Section 3. In Fig. 6 we exhibit the potential V(X), time
series X(t), and PDF P(X) for the liquid and vapor
states, as well as for the coexistence regime.

For λ = –1 and T = , as shown in Figs. 5b and 6a,
the thermal energy kB  exceeds the potential barrier
ΔVl, but it is less than Δ . Hence the system fluctuates
around the fixed point , the vapour state. This is
evident from the time series X(t) and PDF P(X) shown
in Figs. 6b, 6c respectively. Note that occasionally, the
system crosses X = 0 barrier.

For λ = 1 and T = Tl, as shown in Figs. 5b and  6g,
Δ  < kB  < ΔVl. Hence, the system tends to oscillate
around X = Xl, the liquid state. See Figs. 6h, 6i for
illustrations of the time series X(t) and PDF P(X). For
this case, the f luctuations are lower than that for T =

 due to the lower temperature. For T = , Δ  =
kB  = ΔVl, hence the system fluctuates around both
the minima, and it corresponds to the phase coexis-
tence.

Thus, we show that Eq. (31) exhibits two phases
and phase coexistence depending on the temperature.
The aforementioned example and that of Section 3
demonstrate that these features are common among
the noisy bistable systems.
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